Рекомендательные технологии
На информационном ресурсе при применении информационных технологий предоставления информации осуществляется сбор, систематизация и анализ сведений, относящихся к предпочтениям пользователей сети «Интернет», находящихся на территории Российской Федерации»
Как формируются рекомендации
1. Собираем предпочтения клиентов
Невозможно рекомендовать человеку товар, когда не знаешь о его предпочтениях или, по крайней мере, о предпочтениях других клиентов, похожих на него. Поэтому Mindbox использует данные о действиях покупателей, например:
- просмотрах продуктов или категорий продуктов;
- продуктах в «Избранном», «Корзине», листе ожидания или других списках;
- составе и датах заказов;
- взаимодействиях с коммуникациями. Это, например, открытие писем и переходы по ссылкам из рекламы.
Также для более точных рекомендаций могут учитываться данные о самих покупателях, например о:
- местонахождении, чтобы показывать рекомендации для конкретного региона, и часовом поясе, чтобы делать это вовремя;
- поле или возрасте, чтобы предлагать подходящие продукты. Например, платья — женщинам, а фильмы 16+ — взрослым.
2. Подбираем рекомендации на основе предпочтений
Есть три подхода к формированию рекомендаций:
Подбор похожих и сопутствующих продуктов. Алгоритмы анализируют свойства тех продуктов, которыми интересовался клиент: цвет, жанр, коллекция, категория или производитель. По этим признакам подбираются продукты, которые также могут его заинтересовать. Например, если покупатель искал на сайте автодилера новый атвомобиль определенного бренда, в рекомендациях появятся новые автомобили этого бренда. Так клиент вспомнит, что нужно продолжить знакомство или перейти к покупке интересующего атвомобиля. Хотя мог бы и не добраться до него, если бы просто листал витрину.
Рекомендации популярных продуктов. Алгоритм анализирует взаимодействие всех клиентов с продуктами и может подсказать тот, у которого самый высокий спрос или лучшие оценки. Это полезно, если клиент впервые пришел на сайт и о нем еще ничего неизвестно. Mindbox порекомендует то, что нравится большинству других покупателей. Например, на сайте автомобильного дилера рядом с самыми популярными моделями появится виджет «Хиты продаж».
Рекомендации как для клиента с похожими предпочтениями. Алгоритм анализирует сходства в поведении клиентов. Если двум покупателям нравится одна и та же группа продуктов, их предпочтения похожи. Значит, первому можно рекомендовать то, что заинтересовало второго, и наоборот. Например, двум посетителям сайта автодилера нравятся хэтбеки и кроссоверы. Один из них еще и фанат универсалов — второму тоже можно порекомендовать этот тип кузова. Такой подход помогает выявлять неочевидные предпочтения и составлять более разносторонние рекомендации.
3. Уточняем рекомендации
После того, как рекомендации по предпочтения составлены, можно сделать их еще точнее, добавив в Mindbox дополнительные условия. Например, показывать продукты только в географической зоне клиента. А также исключить из рекомендаций товары, которые покупают независимо от предпочтений — скажем, аптечка.
Где отображаются рекомендации
Когда рекомендательные алгоритмы настроены и обучены, они могут показывать покупателю подборки продуктов в любой точке контакта клиента с брендом: на сайте — при помощи виджета, в рассылках, мобильном приложении, колл-центре, на кассе.